

Salt gradients in rivers change adsorption of Cd and Zn on tire and road wear particles – experimental approach

Angus Rocha Vogel^{a,b,*}; Yannik Kolberg^{a,c}; Wolf von Tümpling^{a,b}

^aHelmholtz Centre for Environmental Research – UFZ, Water Analytics & Chemometrics, Brückstraße 3a, 39114 Magdeburg, Germany ^bFriedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743 Jena, Germany ^cUniversity of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany

*e-mail address: angus.rocha.vogel@ufz.de

Fig. 1 Sketch of the emission of TWP into aquatic systems. Adsorption of trace elements, no adsorption of complexes.

Motivation

- tire wear particles (TWP) are a major source of microplastics (MP) in the environment
 - \succ TWP estimated to make up to 30% of MP emissions ^[1]
- up to **20,000 t TWP** emitted into German surface waters **per year** ^[2]
 - main entry paths: surface runoff and sewerage ^[2]
 - TWP-concentration up to 18 mg/L estimated in surface water ^[3]

adsorption of trace elements on TWP under investigation and observed for Cr, Ni, Cd, Pb^[4-6] \succ this adsorption could lead to a potential deterioration of the chemical water quality ^[6]

all major rivers discharge into the sea experiencing a salt gradient influencing the adsorption \succ seasonal anthropogenic impacts like gritting roads with salt in winters

-> This study investigated influence of varying salt concentrations on the adsorption of trace elements

Methods

- adapted from Glaubitz et al. (2023)^[5] and Rocha Vogel et al. (2024)^[6]
- 16.7 mg "real world" tire materials (TRWP+RS) weighed into glassware
- NaCl added to obtain the required salt concentrations
 - > six samples ranging from 0.15 g/L CI⁻ (Freiberger Mulde) to 15.2 g/L CI⁻ (tidal Elbe, Northsea) (s. Fig. 2)

filtration of the TRWP+RS samples (0.2 µm), subsequent drying, digestion in microwave (reverse)

aqua regia, $V(HNO_3)$: V(HCI) = 3:1) and trace element determination via ICP-MS/MS

L filtered water samples (0.2 µm) from Freiberger Mulde added samples shaken for 24 h on a shaking device (150 min⁻¹)

Fig. 2 Sampling sites along the Elbe catchment area. QGIS. © GeoBasis-DE / BKG (2024) [7].

Tab. 1 Theoretical classification of priority trace elements (Cr, Ni, Cu, Zn, Cd, Pb, As*) by the LAWA (*ARGE ELBE) system for suspended matter for TRWP+RS treated with water from the Freiberger Mulde resembling the salt concentration of both Freiberger Mulde and tital Elbe (Northsea). Comparison with the classification of suspended matter in the river Elbe^[8].

	TRWP+RS before ads. exp.	TRWP+RS in Freiberger Mulde	TRWP+RS in tidal Elbe (Northsea)	Elbe ^[8]	LAWA	
β(CI ⁻) / mg/L		146	15,200	suspended matter	quality class	explanation
Cr	III	III	III	11-111	1	geogenic background
Ni	11-111	III	Ш	ll i	1-11	lightly polluted
Cu	IV	IV	IV	11-111	Ш	moderately polluted
Zn 🗆	IV			III-IV	11-111	critically polluted
As*	Ш	II	II	11-111	Ш	heavily polluted
Cd 🔺				III-IV	III-IV	very heavily polluted
Pb	11-111	-	11-111	11-111	IV	excessively polluted
3000 -						12
2500 -	2500 - weak decrease of adsorption capacity for 7					
ັງ 2000 - ຄ		rong decrease				8 v(Cd)

Results

- Cu and Zn in TRWP+RS (before ads. exp.) could pose an endangering for suspended matter in rivers
- after adsorption experiment (Freiberger Mulde) significant adsorption of especially **Cr**, **Ni**, **(Zn)** and **Cd** on TRWP+RS was observed
 - this could lead to a deterioration of the chemical water quality of the suspended matter referring to Cr, Ni, Zn and especially Cd.
 - Zn is not likely to be adsorbed by the TWP in TRWP+RS but by other components (road or brake wear) in this TRWP+RS sample
- increasing salt concentrations change some adsorption properties
 - adsorption of Cd and Zn on TRWP+RS is weaker while increasing salt concentration (s. Tab. 1 and Fig. 3)
 - \succ Cd and Zn can form [MCl₄]²⁻-complexes ^[9], which do not readily bind to the negatively charged TRWP+RS surface ^[10]
 - > adsorption of **Cr**, **Ni**, **Cu**, **As** and **Pb** on TRWP+RS is **not affected**

Conclusion and Outlook

Fig. 3 Dependency of Cd and Zn content in and on TRWP+RS on the salt concentration.

Literature

- ^[1] J. Bertling, R. Bertling, L. Hamann, *Kurzfassung der Konsortialstudie*, Fraunhofer UMSICHT, Oberhausen, **2018**.
- ^[2] B. Baensch-Baltruschat, B. Kocher, C. Kochleus, F. Stock, G. Reifferscheid, Sci. Total Environ., 2021, 752, 141939.
- ^[3] A. Wik, G. Dave, *Environ. Pollut.*, **2009**, 157, 1.
- ^[4] X. Fan, Z. Ma, Y. Zou, J. Liu, J. Hou, *Environ. Res.*, **2021**, *195*, 110858.
- ^[5] F. Glaubitz, <u>A. Rocha Vogel</u>, <u>Y. Kolberg</u>, <u>W. von Tümpling</u>, H. Kahlert, *Environ. Pollut.*, **2023**, 335, 122293.
- ^[6] <u>A. Rocha Vogel, Y. Kolberg, M. Schmidt, H. Kahlert, W. von Tümpling, Environ. Pollut.</u>, 2024, 359, 124571
- ^[7] © GeoBasis-DE / BKG (2024), © OpenStreetMap contributors, Microsoft, Facebook, Google, Esri Community Maps contributors, map layer by Esri
- ^[8] A. Prange et al., *BMBF-Project*, final report, no. 2, Geesthacht, **1997**.
- ^[9] A. F. Hollemann, E. Wiberg, N. Wiberg, *Lehrbuch der anorganischen Chemie*, 102nd ed., Berlin, *de Gruyter*, **2007**.
- ^[10] W. Huang, J. Deng, J. Liang, X- Xia, Chem. Eng. J., 2023, 460, 141838.

- these findings are helpful assessing the **potential risks** posed by trace elements adsorbed onto TRWP(+RS), predicting the binding properties of trace elements on TRWP(+RS) in environmental relevant contexts \succ e.g. large river systems, water retention projects (sponge city)
- further investigations regarding other biogeochemical processes (biofilm, sedimentation) are needed

Abbreviations

ads. exp. adsorption experiment TRWP+RS: tire and road wear particles including road sediment TRWP: tire and road wear particles

TWP: tire wear particles

www.ufz.de